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Overview and motivation

1

How is polar decomposition from operator theory interpretated in
topos theory?

2

What is the common ground shared by toposes and C ∗-algebras?
How do we match concepts between the two disciplines?

3

We define a left-cancellative category and a topos of a C ∗-algebra
in a manner that resembles what is done in pseudogroup and
inverse semigroup theory [2, 3], while recognizing that for
C ∗-algebras there are some distinct and novel points of departure
from the semigroup constructions.
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Overview and motivation continued

4

We work under a certain hypothesis we call a supported
C ∗-algebra.

5

The topos interpretation of polar decomposition we shall see is
part of a correspondence between quotients of a torsion-free
generator of the topos of a C ∗-algebra and certain subcategories of
its left-cancellative category.
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Example: bounded operators on Hilbert space

Support/cosupport

Let H denote a Hilbert space
Let B(H) denote the C ∗-algebra of bounded operators on H .
∀S ,T ,R ∈ B(H) Ker(S) ⊆ Ker(T ) ⇒ Ker(SR) ⊆ Ker(TR) .

For T ∈ B(H) let N(T ) denote the projection associated with the
subspace Ker(T ) .
∀S ,T ,R N(S) ≤ N(T ) ⇒ N(SR) ≤ N(TR) .

The support projection C (T ) = I − N(T ∗) is the projection
associated with Ran(T ) .
∀S ,T ,R : C (S) ≤ C (T ) ⇒ C (RS) ≤ C (RT )
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Example continued

A category associated with H
Let L(H) denote the following category.
Objects: the subspaces of H .
Morphisms: T : M // N is a linear operator T on H such that
Ker(T ) = M⊥ , and Ran(T ) ⊆ N .

L(H) is a category

K
TS

��

S

~~
M

T // N
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Example continued

We must have Ker(TS) = K⊥

We have Ker(S) = K⊥ and Ran(S) ⊆ M = Ker(T )⊥

Therefore, Ker(T ) ⊆ Ker(S∗)

Hence, Ker(TS) ⊆ Ker(S∗S)
exercise︷︸︸︷
= Ker(S)

The other inclusion Ker(S) ⊆ Ker(TS) is trivial.
Therefore, Ker(TS) = Ker(S)

L(H) is left-cancellative

Let T : M // N be a morphism. Let P denote the projection
associated with the subspace M : Ker(T ) = Ker(P) .
Suppose that TS = TR , where S ,R : K // M .
Then for any v ∈ H , we have S(v)− R(v) ∈ Ker(T ) .
Thus, P(S(v)− R(v)) = 0 , whence
S(v) = PS(v) = PR(v) = R(v) . Thus, S = R .
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Supported C ∗-algebra A

Support/cosupport projection

Let T ∈ A .

A support projection C (T ) satisfies C (T ) ≤ P iff T = PT
(so T = C (T )T )

A cosupport projection N(T ) satisfies P ≤ N(T ) iff TP = 0
(so TN(T ) = 0)

Lemma: If C (T ) exists, then C (TT ∗) = C (T ) .

This follows from the C ∗-identity ∥TT ∗∥ = ∥T∥2
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Supported C ∗-algebra A continued

Support hypothesis

We shall say that a C ∗-algebra A is supported if:

1 every T ∈ A has a support projection C (T ) such that

2 ∀S ,T ,R : C (S) ≤ C (T ) ⇒ C (RS) ≤ C (RT ) (Stability).

The support hypothesis has an equivalent cosupport form:

Cosupport

1 every T has a cosupport projection N(T ) such that

2 ∀S ,T ,R : N(S) ≤ N(T ) ⇒ N(SR) ≤ N(TR) .

von Neumann algebra

B(H) and more generally any von Neumann algebra is supported
in this sense.
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Polar decomposition

Existence

T = VA such that:

1 V is a partial isometry: VV ∗V = V

2 A is positive: self-adjoint and spectrum ⊆ [0,∞)

3 C (A) = V ∗V

Note: T ∗T = AV ∗VA = AC (A)A = AA = A2 ; |T | =
√
T ∗T = A ,

so that C (T ∗) = C (T ∗T ) = C (A2) = C (A) = C (|T |)

Another way: T = V |T | ; C (T ∗) = V ∗V
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Polar decomposition continued

Uniqueness

If T = VA = UB ; C (A) = V ∗V ; C (B) = U∗U
then U = V and A = B .

Supported implies uniqueness

If A is supported, then a polar decomposition of an element is
necessarily unique.
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The left-cancellative category L(A)

Definition of L(A)

Let A denote a unital supported C ∗-algebra.

Objects: projections P of A (P∗P = P)
Morphisms: T : P // Q , C (T ∗) = P (iff N(T ) = I − P),
and T = QT (C (T ) ≤ Q)

Another way: a morphism is a pair (T ,Q) such that T = QT .
Domain of (T ,Q) is C (T ∗)
Codomain of (T ,Q) is Q
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L(A) is a category

P
TS

��

S

��
Q

T // O

We have C (S) ≤ Q = C (T ∗) .

Then P = C (S∗) = C (S∗S)

stability︷︸︸︷
≤ C (S∗T ∗) ≤ C (S∗)

Thus, P = C (S∗T ∗) = C ((TS)∗) .
We also have T = OT so of course TS = OTS .

The identity morphism P // P is simply P .
Indeed, if T : P // Q is a morphism,
then TP = TC (T ∗) = T and QT = T .

Jon Toposes and C∗-algebras [1]



L(A) is left-cancellative

Suppose that we have morphisms

P
S

**

R

44 Q
T // O such that TS = TR .

Then T (S − R) = 0 ⇒ (S∗ − R∗)T ∗ = 0
⇒ C ((S∗ − R∗)T ∗) = 0 .
We have C (Q) = Q = C (T ∗)

Therefore, C ((S∗ − R∗)Q)

stability︷︸︸︷
≤ C ((S∗ − R∗)T ∗) = 0

⇒ (S∗ − R∗)Q = 0
⇒ Q(S − R) = 0 ⇒ S = QS = QR = R .
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Topos of presheaves on L(A): B(A)

Definition of B(A)

An object of this topos is a functor:
F : L(A)op // Set

Representable presheaf

Let Q be a projection.
Q : L(A)op // Set
Q(P) = L(A)(P,Q) = {T ∈ A | C (T ∗) = P ; T = QT }
Transition in Q along S : O // P : T · S = TS for C (T ∗) = P
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B(A) continued

Representable presheaf associated with the unit I

I : L(A)op // Set
I (P) = {T ∈ A | C (T ∗) = P }
Transition in I along S : O // P : T · S = TS for C (T ∗) = P
(Existence of unit I not necessary)

B(A) is an étendue

The presheaf I is a torsion-free generator [4].
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The positive quotient

The presheaf of positive operators

I+ : L(A)op // Set
I+(P) = {A ∈ A | 0 ≤ A ; C (A) = P }
Transition in I+ :
let S : P // Q is a morphism of L(A) and C (A) = Q
Define A · S = S∗AS = (

√
AS)∗

√
AS , which is positive.

Then C (S∗AS) = C ((
√
AS)∗

√
AS) = C ((

√
AS)∗) = P , where√

A : Q // Q is a morphism of L(A) ; C (
√
A) = C (A) = Q

The quotient map d : I // I+

dP : I (P) // I+(P) ; dP(T ) = T ∗T
d is a natural transformation: S∗T ∗TS = (TS)∗TS
d is an epimorphism: if C (A) = P , then dP(

√
A) = A .

Caution: A 7→
√
A is not a section of d .
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Wide subcategory

Group actions

Suppose that f : H // G is an injective homomorphism.
Then the (right) coset G/fH is a G -set (object of B(G )), and
G // G/fH is an equivariant map (morphism of B(G )).
We have geometric morphisms:

B(H)

f

$$

..
B(G )/G/fH

étale

xx
B(G )

The one depicted horizontally is an equivalence.
Therefore, the one associated with f is étale.
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Wide subcategory of L(A)

A functor D // L(A) is a wide subcategory if:

1. D has the same set of objects as L(A) , which is the set of
projections of A ;

2. the functor is faithful - usually we just assume
D(P,Q) ⊆ L(A)(P,Q) , for every P,Q ;

3. every subprojection P ≤ Q is a morphism of D .
Thus, for all projections P,Q we have
P(A)(P,Q) ⊆ D(P,Q) ⊆ L(A)(P,Q) ;

4. for S ,T ∈ A such that C (T ) ≤ C (S∗) (T = C (S∗)T ),
if S , ST ∈ D , then T ∈ D .
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Examples of wide subcategories of L(A)

Two trivial ones

P(A) // L(A) and L(A) // L(A)

The wide subcategory of partial isometries

∂(A) // L(A)
V : P // Q such that P = V ∗V and V = QV
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Right cosets of a wide subcategory D // L(A)

The right coset of T ∈ A
DT = { ST | S ∈ D ; C (T ) ≤ C (S∗) }

The presheaf of right cosets

Define a presheaf
I/D (P) = {DT | C (T ∗) = P }
Transition along S : P // Q is given by DT · S = D(TS) .

The quotient of right cosets

q : I // I/D
qP : I (P) // I/D (P) ; qp(T ) = DT , for C (T ∗) = P
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The principal fiber of a map I // X

Given a map q : I // X of B(A)

Define a subcategory F(q) // L(A) :
Objects: projections of A
Morphisms: S : P // Q such that qP(S) = qP(P) ,
where qP : I (P) // X (P) .

Morphism of F(q) interpreted in B(A)

P

qP

  

S
,,

P

��

Q

Q��
qQ

~~

I

q

��
X
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F(q) // L(A) is wide

PROOF: 4. Suppose we have T : O // P and S : P // Q ,
such that qO(ST ) = qO(O) and qP(S) = qP(P) .
Then we have
qO(T ) = qO(PT ) = qP(P) · T = qP(S) · T = qO(ST ) = qO(O)
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Example: the wide subcategory of the positive quotient

Proposition

The principal fiber of the positive quotient d : I // I+ coincides
with the wide subcategory of partial isometries ∂(A) // L(A) .
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The counit

Start with q : I // X

Then form F(q) // L(A) , and its quotient of cosets.
I

q

��||
I/F(q)

ε(q) // X

The component ε(q)P at a projection P of the factoring map ε(q)
is defined by ε(q)P(F(q)T ) = qP(T ) ; C (T ∗) = P

Exact quotient of I

We say that q : I // X is exact if ε(q) is an isomorphism.
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The bijective correspondence

Definition

A wide subcategory D // L(A) is principal if for all S ∈ D we
have C (S∗) ∈ DS .

Remark

A wide subcategory D // L(A) is principal iff for all S ∈ D we
have DS = DC (S∗) .

Proposition

There is a bijective correspondence between the principal wide
subcategories of L(A) , and the exact quotients of I in B(A) .
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Polar decomposition in B(A)

Theorem

Let A be a unital supported C ∗-algebra.
Then A has polar decomposition iff the positive quotient d is
exact.

I
d

��||
I/∂(A)

ε(d) // I+

Corollary

The positive quotient in the topos of a von Neumann algebra is
exact.

Proof: A von Neumann algebra has polar decomposition.
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‘Scratching the surface’

Morita equivalence

Cohomology

Factor theory

Factor theory of von Neumann algebras is related to isotropy
theory of toposes.

Topos representations of a (supported) C ∗-algebra A
This is a functor

L(A) // E ,

which may be filtered, etc.
For instance, the canonical one

Yoneda : L(A) //B(A) .
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Thank you
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