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Overview and motivation

How is polar decomposition from operator theory interpretated in
topos theory?

What is the common ground shared by toposes and C*-algebras?
How do we match concepts between the two disciplines?

We define a left-cancellative category and a topos of a C*-algebra
in a manner that resembles what is done in pseudogroup and
inverse semigroup theory [2, 3], while recognizing that for
C*-algebras there are some distinct and novel points of departure
from the semigroup constructions.
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Overview and motivation continued

We work under a certain hypothesis we call a supported
C*-algebra. )
The topos interpretation of polar decomposition we shall see is
part of a correspondence between quotients of a torsion-free

generator of the topos of a C*-algebra and certain subcategories of
its left-cancellative category.

v
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Example: bounded operators on Hilbert space

Support/cosupport

Let H denote a Hilbert space
Let B(*) denote the C*-algebra of bounded operators on H .
VS, T,R e B(H) Ker(S) C Ker(T) = Ker(SR) C Ker(TR).

For T € B(#) let N(T) denote the projection associated with the
subspace Ker(T).
VS, T,R N(S) < N(T) = N(SR) < N(TR).

The support projection C(T) =/ — N(T*) is the projection
associated with Ran(T).
VS, T,R: C(S)< C(T)= C(RS) < C(RT)
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Example continued

A category associated with H

Let L(#H) denote the following category.

Objects: the subspaces of H .

Morphisms: T : M — N is a linear operator T on # such that
Ker(T) = M+, and Ran(T) C N.

L(H) is a category

2N

M N
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Example continued

We must have Ker(TS) = K+

We have Ker(S) = K+ and Ran(S) € M = Ker(T)+
Therefore, Ker(T) C Ker(S*)

Hence, Ker(TS) C Ker(S*S) "= Ker(S)
The other inclusion Ker(S) C Ker(TS) is trivial.
Therefore, Ker(TS) = Ker(S)

L(#) is left-cancellative

Let T: M — N be a morphism. Let P denote the projection
associated with the subspace M: Ker(T) = Ker(P).
Suppose that TS = TR, where S, R: K — M.

Then for any v € H, we have S(v) — R(v) € Ker(T).

Thus, P(S(v) — R(v)) =0, whence

S(v) = PS(v) = PR(v) = R(v). Thus, S = R.
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Supported C*-algebra A

Support/cosupport projection

Let Te A.
@ A support projection C(T) satisfies C(T) < P iff T = PT
(so T=C(T)T)
@ A cosupport projection N(T) satisfies P < N(T) iff TP =0
(so TN(T) =0)

Lemma: If C(T) exists, then C(TT*) = C(T).

This follows from the C*-identity || TT*|| = || T2
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Supported C*-algebra A continued

Support hypothesis

We shall say that a C*-algebra A is supported if:
@ every T € A has a support projection C(T) such that
Q@ VS, T,R: C(S)<C(T)= C(RS) < C(RT) (Stability).

The support hypothesis has an equivalent cosupport form:

@ every T has a cosupport projection N(T) such that
@ VS, T,R: N(S)< N(T)= N(SR) < N(TR).

von Neumann algebra

B(H) and more generally any von Neumann algebra is supported
in this sense.
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Polar decomposition

T = VA such that:
© V is a partial isometry: VV*V =V
@ A is positive: self-adjoint and spectrum C [0, 00)

Q C(A)=V*V

Note: T*T = AV*VA = AC(A)JA=AA=A?; |T|=VT*T = A,

so that C(T*) = C(T*T) = C(A%) = C(A) = C(|T))

Another way: T = V|T|; C(T*) = V*V

.
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Polar decomposition continued

If T=VA=UB; C(A)=V*V; C(B)
then U=V and A=B.

Supported implies uniqueness

If A is supported, then a polar decomposition of an element is
necessarily unique.
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The left-cancellative category L(.A)

Definition of L(.A)

Let A denote a unital supported C*-algebra.

Objects: projections P of A (P*P = P)

Morphisms: T: P — Q, C(T*)=P (iff N(T)=1—-P),
and T = QT (C(T) < Q)

Another way: a morphism is a pair (T, Q) such that T = QT .
Domain of (T, Q) is C(T*)
Codomain of (T, Q) is Q

.
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L(A) is a category

SN
Q————0
We have C(5) < Q = C(T%).

stability
=~
< C

Then P = C(S5*) = C(5*S)
Thus, P=C(S*T*) = C((TS)").
We also have T = OT so of course TS = OTS.

(5777) < C(57)

The identity morphism P — P is simply P.
Indeed, if T: P — Q@ is a morphism,
then TP =TC(T*)=T and QT =T.
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L(A) is left-cancellative

Suppose that we have morphisms
S

PZ_  >Q—T1—=0 suchthat TS = TR.

R
Then T(S—R)=0= (S* — R\)T* =0
= C((§* —R*)T*)=0.
We have C(Q) = Q = C(T™)
stability
< c

Therefore, C((S* — R*)Q)
= (S*—R*)Q=0
= Q(S—R)=0=S5=Q5=QR=R.

(5"~ R)T*) =0
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Topos of presheaves on L(A): %B(A)

Definition of %(.A)

An object of this topos is a functor:
F : L(A)°P — Set

Representable presheaf

Let @ be a projection.

Q : L(A)°P — Set

Q(P) = LA)P, Q) ={TecA|C(T*)=P; T=QT}
Transition in Q along S: O — P: T-S=TS for C(T*)=P
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P(A) continued

Representable presheaf associated with the unit /

| : L(A)°P — Set

I(P)={TeA|C(T")=P}

Transition in [ along S: O — P: T-S=TS for C(T*)=P
(Existence of unit / not necessary)

PB(A) is an étendue

The presheaf [ is a torsion-free generator [4].
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The positive quotient

The presheaf of positive operators

IT: L(A)°P — Set

IT(P)={Ae A|0<A; C(A =P}

Transition in /T :

let S: P — Q is a morphism of L(A) and C(A) = Q

Define A-S = S*AS = (\//Z )*\//ZS which is positive.

Then C(S*AS) = C((VAS)*VAS) = C((V/AS)*) = P, where
VA:Q — @ is a morphism of L(A) ; C(v/A) = C(A) = Q

The quotient map d : [ — [T

dp : I(P) — IT(P); dp(T)=T*T

d is a natural transformation: S*T*TS = (TS)*TS

d is an epimorphism: if C(A) = P, then dp(v/A) = A.
Caution: A — /A is not a section of d .
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Wide subcategory

Group actions

Suppose that f : H — G is an injective homomorphism.
Then the (right) coset G/fH is a G-set (object of #(G)), and
G — G/fH is an equivariant map (morphism of Z(G)).

We have geometric morphisms:

B(H) #(G)/G/fH

f étale
#(G)

The one depicted horizontally is an equivalence.
Therefore, the one associated with f is étale.
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Wide subcategory of L(.A)

A functor D— L(.A) is a wide subcategory if:

2]

o

D has the same set of objects as L(.A), which is the set of
projections of A;

the functor is faithful - usually we just assume

D(P,Q) C L(A)(P, Q), for every P, Q;

every subprojection P < @ is a morphism of D.

Thus, for all projections P, @ we have

P(A)(P,Q) S D(P, Q) C L(A)(P,Q);

for S, T € A such that C(T) < C(S*) (T = C(5%)T),

if S,ST €D, then T €D.

.
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Examples of wide subcategories of L(.A)

Two trivial ones

P(A) — L(A) and L(A) — L(A)

The wide subcategory of partial isometries

9(A) — L(A)
V:P — Qsuchthat P=V*V and V = QV
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Right cosets of a wide subcategory D — L(.A)

The right coset of T € A
DT ={ST|SeD,; C(T)<C(5%)}

The presheaf of right cosets

Define a presheaf
I/D(P)={DT | C(T")=P}
Transition along S: P — Q is given by DT - S = D(TS).

The quotient of right cosets

qg:1 — 1/D
gp: I(P) = I/D(P); qo(T)=DT, for C(T*)=P
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The principal fiber of a map | — X

Given amap q: | — X of #(A)

Define a subcategory F(q) —= L(A):

Objects: projections of A

Morphisms: S: P — Q@ such that gp(S) = qp(P),
where gp : I(P) — X(P).

Morphism of F(q) interpreted in %(A)

P

¥
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F(q) — L(A) is wide

PROOF: 4. Suppose we have T: O — Pand S: P - Q,
such that go(ST) = qo(0O) and gp(S) = qp(P) .

Then we have

q0(T) =qo(PT) =qp(P)- T =qp(S)- T = qo(ST) = q0(0)
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Example: the wide subcategory of the positive quotient

Proposition

The principal fiber of the positive quotient d : | — I coincides
with the wide subcategory of partial isometries 9(A) — L(A).
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Start with g : | — X

Then form F(q) — L(A), and its quotient of cosets.

/

/ \1
e(q)

I/F(q) ————=X

The component £(q)p at a projection P of the factoring map &(q)

is defined by £(q)p(F(q)T) = gp(T); C(T*)=P

Exact quotient of /
We say that g : | — X is exact if €(q) is an isomorphism.
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The bijective correspondence

A wide subcategory D — L(\A) is principal if for all S € D we
have C(S§*) € DS.

A wide subcategory D — L(.A) is principal iff for all S € D we
have DS = DC(S%).

Proposition
There is a bijective correspondence between the principal wide
subcategories of L(.A), and the exact quotients of / in #(A).
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Polar decomposition in %(.A)

Let A be a unital supported C*-algebra.
Then A has polar decomposition iff the positive quotient d is
exact.

1/0(A)

v
The positive quotient in the topos of a von Neumann algebra is
exact.

Proof: A von Neumann algebra has polar decomposition.
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‘Scratching the surface’

Cohomology

Factor theory

Factor theory of von Neumann algebras is related to isotropy
theory of toposes.

Topos representations of a (supported) C*-algebra A

This is a functor

L(A)—&

which may be filtered, etc.
For instance, the canonical one

Yoneda : L(A) — %’(A)
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Thank you
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